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Studies using haplotypes of multiple tightly linked markers are more informative than those using a single marker.
However, studies based on multimarker haplotypes have some difficulties. First, if we consider each haplotype as
an allele and use the conventional single-marker transmission/disequilibrium test (TDT), then the rapid increase
in the degrees of freedom with an increasing number of markers means that the statistical power of the conventional
tests will be low. Second, the parental haplotypes cannot always be unambiguously reconstructed. In the present
article, we propose a haplotype-sharing TDT (HS-TDT) for linkage or association between a disease-susceptibility
locus and a chromosome region in which several tightly linked markers have been typed. This method is applicable
to both quantitative traits and qualitative traits. It is applicable to any size of nuclear family, with or without
ambiguous phase information, and it is applicable to any number of alleles at each of the markers. The degrees
of freedom (in a broad sense) of the test increase linearly as the number of markers considered increases but do
not increase as the number of alleles at the markers increases. Our simulation results show that the HS-TDT has
the correct type I error rate in structured populations and that, in most cases, the power of HS-TDT is higher than
the power of the existing single-marker TDTs and haplotype-based TDTs.

Introduction

The transmission/disequilibrium test (TDT) (Spielman et
al. 1993) and the allied tests have become popular tools
for the testing of genetic linkage and association between
a marker and a susceptibility locus. The attractiveness of
the original TDT and some of its extensions lies in their
robustness to population stratification. Furthermore, un-
der some conditions, their power may be greater than that
of the conventional linkage analysis (Risch and Merikan-
gas 1996; Knapp 1999). The original TDT and most of
its extensions for qualitative traits (Bickeboller and Cler-
get-Darpoux 1995; Sham and Curtis 1995; Schaid 1996;
Spielman and Ewens 1998; Sun et al. 1999) and quanti-
tative traits (Allison 1997; Rabinowitz 1997; Schaid and
Rowland 1998; Monks and Kaplan 2000; Sun et al. 2000)
consider one marker at a time. Generally speaking, haplo-
types across several markers contain more information
than a single marker. First, in the setup of the single-mark-
er TDT and the allied tests, which compare the numbers
of transmitted and nontransmitted alleles, an informative
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family must have at least one heterozygous parent. In all
but the most extreme case of absolute linkage disequilib-
rium, transmissions from the parents to an offspring are
more informative for haplotypes than for a single marker.
Second, disease-marker association may not be detectable
as first-order association between a single marker and the
disease locus but may be detected by extended marker
haplotypes.

With the rapid progress of the Human Genome Proj-
ect, many genetic markers can now be identified and
genotyped within a very short physical distance, and the
study of multimarker haplotypes will likely yield more
genetic information than the study of a single marker.
Several authors have proposed TDT-type tests using
haplotypes (Lazzeroni and Lange 1998; Merriman et al.
1998; Clayton 1999; Clayton and Jones 1999; Bourgain
et al. 2000, 2001, 2002; Rabinowitz and Laird 2000;
Zhao et al. 2000; Li et al. 2001; Seltman et al. 2001).
Although multimarker haplotypes are more informative
than a single marker, there exists one negative feature
of haplotype-based tests, which is the increase in the
degrees of freedom. In particular, for H realized haplo-
types, the tests follow a distribution with df2x H � 1
under the null hypothesis of no linkage or association
(Seltman et al. 2001). The number of haplotypes will
increase rapidly with the number of markers. A large
number of haplotypes—and, thus, a large number of
degrees of freedom—will limit the power of the haplo-
type-based TDT tests. Ideally, there are some ways to
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Figure 1 Calculation of the similarity between two haplotypes around a specific marker. The similarity is taken as the length of the region
shared IBS around this marker.

use the multimarker haplotypes and to reduce the num-
ber of degrees of freedom.

One way to reduce the number of degrees of freedom
is to group the haplotypes. There are many ways to
group the haplotypes; for example, Seltman et al. (2001)
have used estimated evolutionary relationships, and Li
et al. (2001) have used a clustering method based on
similarities.

Another way to limit the degrees of freedom was
proposed by Bourgain et al. (2000, 2001, 2002). In-
stead of comparing the numbers of the transmitted and
nontransmitted haplotypes, they used the maximum
identity length contrast (MILC) method to compare
the mean shared length of the transmitted haplotypes
and the mean shared length of the nontransmitted
haplotypes. The advantage of the MILC method is that
the degrees of freedom (in a broad sense; see appendix
D) is the number of markers considered. Generally, the
number of markers is much less than the number of
haplotypes. Furthermore, the MILC method makes no
assumption on the existence of a unique ancestral hap-
lotype. The simulation results of Bourgain et al. (2000)
showed that the MILC method may be more powerful
than the single-marker TDT. However, a limitation of
the MILC method is that it is applicable to qualitative
traits only, although quantitative traits may contain
more information.

In the present article, we propose a haplotype-sharing
TDT (HS-TDT) to analyze multiple tightly linked mark-
ers. This method is applicable to both qualitative traits
and quantitative traits. It is applicable to any size of nu-
clear families with or without ambiguous phase infor-
mation, and it is applicable to any number of alleles at
each of the markers. The MILC method proposed by
Bourgain et al. (2000, 2001, 2002) is a special case of
our test. The degrees of freedom (in a broad sense) of
our test increase linearly with the number of markers,
instead of with the number of haplotypes. We compare
the performance of the proposed method with existing

single-marker TDT–type methods and existing hap-
lotype-based TDT–type methods through simulations.
Our simulation results show that HS-TDT has the cor-
rect type I error rate in structured populations and that,
in most cases, the power of HS-TDT is higher than the
power of other methods.

Methods

Notation

Suppose that n nuclear families are sampled with ti

children in the ith family and that L tightly linked mark-
ers are typed both for the children and for the parents.
Let denote the trait value of the kth child in the ithyik

family. For a qualitative trait of interest, we let y p 1
denote the affected individual and denote the un-y p 0
affected individual. Our proposed method is based on
the similarities of the haplotypes. First, we define the
similarity between a pair of haplotypes around a specific
marker. , a natural measure of the similarity be-S (l)H ,Hi j

tween two haplotypes and around the lth marker,H Hi j

is the length of the contiguous region around the lth
marker over which the two haplotypes are identical by
state (IBS). This similarity has also been used by Clayton
and Jones (1999) and Bourgain et al. (2000, 2001,
2002), among others. For any pair of haplotypes andHi

, the calculation of , the similarity of the twoH S (l)j H ,Hi j

haplotypes around the lth marker, is as follows. As il-
lustrated in figure 1, starting from the lth marker, the
marker alleles at that marker are compared between the
two haplotypes. If the two alleles at the lth marker are
not the same, then . If the two alleles at theS (l) p 0H ,Hi j

lth marker are IBS, then the comparison is repeated for
the right and left adjacent markers, as long as the alleles
are IBS. is the distance between the leftmost andS (l)H ,Hi j

the rightmost markers with identical alleles. From this
definition, if the two haplotypes are not IBSS (l) p 0H ,Hi j

at the lth marker or if the two haplotypes are IBS at the
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lth marker but not at the adjacent markers. Using the
haplotype similarity between a pair of haplotypes, we
define a haplotype-sharing score of a haplotype by com-
paring the haplotype with all of the parental haplo-4n
types. For any haplotype H, the haplotype-sharing score
at the lth marker, denoted by , is defined as theX (l)H

average similarity between H and all of the parental4n
haplotypes:

n 41
X (l) p S (l) ,��H H,Hij4n ip1 jp1

where denote the four parental haplotypesH , … ,Hi1 i4

in the ith family. For the ith family, let X (l), … ,X (l)i1 i4

denote the haplotype-sharing scores of the four parental
haplotypes at the lth marker and let indicate wheth-yijk

er the parental haplotype is transmitted to the kthHij

child—that is, if is transmitted to the kthy p 1 Hijk ij

child, and otherwise.y p �1ijk

Some understanding of the nature of the haplotype-
sharing score is given by considering the situation in
which the similarity takes only two values h and 0, where
h is the length of the chromosome region across all of
the L markers (two haplotypes are IBS at all of the L
markers). This situation means that, for any pair of hap-
lotypes, either the marker alleles are identical across all
of the L markers or there are no any adjacent markers
at which the marker alleles are IBS. If the lth marker is
either at or tightly linked with the disease-susceptibility
locus, then, at the lth marker, the similarity of two haplo-
types both of which have the disease mutation is ex-
pected to be larger than the similarity of two haplotypes
both of which do not have the disease mutation or one
of which has the disease mutation and the other of which
does not have the disease mutation. Assume that the
similarity of two haplotypes is h if both two haplotypes
bear the disease mutation and is 0 otherwise. Suppose
that, among the parental haplotypes, there are m hap-4n
lotypes with the disease mutation. Under these circum-
stances, the haplotype-sharing score will be for(m/4n) h

a haplotype with the disease mutation and will be 0
otherwise. In general, we would expect the haplotype-
sharing score to be larger for a haplotype with the disease
mutation than that for a haplotype without the disease
mutation.

Consider a disease-susceptibility locus with two
alleles D and d, each with a population frequency pD

and , respectively. Here, “no linkage” means that1 � pD

there is no linkage between the disease-susceptibility
locus and any one of the L markers considered; “no
association” means that, for any haplotype H across
the L markers, , where is the pop-P(DH) p p p pD H H

ulation frequency of haplotype H. The null hypothesis
is no linkage or no association, whereas the alterna-
tive hypothesis is linkage and association. As noted

by Monks and Kaplan (2000), the part of the hypoth-
esis that concerns linkage is straightforward; however,
the part that concerns association requires further de-
tails, because of the population stratification. If pop-
ulation stratification exists, then the null hypothesis is
that there is no linkage or association in any of the
subpopulations from which the parental chromosomes
might originate. To illustrate our method, we begin
with the case of known phase information, and we then
describe how to extend our method to the case of am-
biguous phase information.

Known Phase Information

We begin with the case for which the phase informa-
tion is available. For the ith family and the lth marker,
let denote the difference of the hap-4

x (l) p � y X (l)ik ijk ijjp1

lotype-sharing scores between the parental haplotypes
that are transmitted and the parental haplotypes that are
not transmitted to the kth child. Under the null hypoth-
esis, E( Fchildren’s trait values and parental haplo-yijk

types) p 0; therefore, . One measure of theE [x (l)] p 0ik

relationship between a chromosome region and the dis-
ease-susceptibility locus is the covariance between the
trait values and a variable representing the transmission
of the haplotypes across the chromosome region con-
sidered (Rabinowitz 1997; Monks and Kaplan 2000).
Up to a constant, the estimated covariance between yij

and can be written as ,tix (l) U (l) p � (y � c)x (l)ij i ik ikkp1

where c is an arbitrary constant. The choice of c will be
discussed later. As shown in appendix A, under the null
hypothesis, the transmission of the haplotypes is inde-
pendent of the trait value, and, thus, forE [U (l)] p 0i

any constant c.
To explain the nature of , let us consider a nuclearU (l)i

family with one child. Assume that and , amongH Hi1 i3

parental haplotypes , are transmitted to theH , … ,Hi1 i4

child. Then,

[ ] [ ]U (l) p (y � c) X (l) � X (l) � X (l) � X (l) ,{ }i i1 i1 i3 i2 i4

where is the haplotype-sharing score of . Let cX (l) Hij ij

be the average trait value over all sampled children. If
the disease mutation causes high trait values, then the
high trait values will often occur with the transmission
of haplotypes with the disease mutation; therefore,

is expected to be pos-[X (l) � X (l)] � [X (l) � X (l)]i1 i3 i2 i4

itive for the high trait value . Thus, wey (y � c � 0)i1 i1

would expect to be positive. Similarly, if the dis-U (l)i

ease mutation causes low trait values, we would expect
to be negative. Thus, it is reasonable to constructU (l)i

a test of linkage and association on the basis of .U (l)i

Let , where is a constant. Ourn
U(l) p � wU (l) w 1 0i i iip1

HS-TDT test statistic is defined by .U p max FU(l)F1�l�L

If we know that the disease mutation causes high
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(low) trait values, then we can let U p max U(l)1�l�L

( ). For a qualitative trait of inter-U p max [�U(l)]1�l�L

est, if we assign a trait value 1 for the affected indi-
viduals and a trait value 0 for the unaffected individ-
uals, then we can let . Certainly, theU p max U(l)1�l�L

power of the test will be different for different values
of and c. For the case of a single marker, Sun et al.wi

(2000), Rabinowitz (1997), and Monks and Kaplan
(2000) constructed tests of similar form. Monks and
Kaplan (2000) used in their test; Sun et al.w p 1/ti i

(2000) and Rabinowitz (1997) used , whichw p 1i

gives larger weight to the family with more children.
In our simulations, we use . Further investi-w p 1/ti i

gation is needed for choosing optimal weights. For the
choice of c, in most cases, we let

n ti1 1—c p y p y� � ikn tip1 kp1i

be the mean trait value over all children in all of the
families. When the trait value is qualitative and only
affected children and their parents are sampled, we let

.c p 0
As shown in appendix B, for a qualitative trait, if all

of the children are affected and , then the testw p 1i

statistic U is the same as the MILC method of Bourgain
et al. (2000).

To evaluate the p value of the test, we use a permu-
tation procedure. Under the null hypothesis, a parent is
equally likely to transmit one of the two haplotypes. If
there is only one child, the permutation procedure can
be based on a random assignment of one of the two
paternal haplotypes and one of the two maternal haplo-
types as the transmitted haplotypes. For the case of more
than one child, as noted by Monks and Kaplan (2000),
complications arise in the presence of linkage. In this
case, children with shared haplotypes will have similar
trait values, even in the absence of association. For the
families with more than one child, we use the method
proposed by Monks and Kaplan (2000)—that is, we si-
multaneously permute the transmitted and nontransmit-
ted status of the parental haplotypes for all of the chil-
dren in the family. This procedure is equivalent to mul-
tiplying the value of by , where or �1 withU (l) d d p 1i i i

equal probability.

Ambiguous Phase Information

The method proposed in the previous subsection as-
sumes that the haplotypes of both parents and children
are known. However, for data collected on nuclear fam-
ilies, the haplotypes may not be uniquely determined.
For a nuclear family with one child, necessary conditions
for the haplotype ambiguity include that there is a locus
at which both of the parents and their offspring have

the same heterozygous genotype and that there is anoth-
er locus at which both of the parents and their offspring
do not have the same homozygous genotype (Dudbridge
et al. 2000). Unless there is complete disequilibrium
among the markers, the proportion of ambiguous fam-
ilies increases with the number of markers studied.

Bourgain et al. (2002) proposed a method to deal with
the ambiguity of the haplotypes. In their approach, trans-
mitted and nontransmitted haplotypes were reconstructed
from the genotypes of the parents and the offspring. Al-
leles at loci where the phases could not be unambiguously
determined were treated as missing alleles. In computing
the similarity between two haplotypes, this approach ei-
ther considered the missing allele as a different allele or
discarded the marker with missing alleles. For the tightly
linked markers considered in the present article, we pro-
pose the following method to deal with the ambiguity of
the haplotypes.

For a family with ambiguous haplotypes, let g de-
note the set of the observed multimarker genotypes
of the family members. Suppose that the haplotype
groups and are all of the{H ,H ,H ,H } s p 1, … ,s1 2 3 4 gs s s s

possible parental-haplotype groups that are compat-
ible with g and let denote the frequency of haplo-his

type . If such thatH m � {1, … ,s }i gs

h h h h p max {h h h h } ,1 2 3 4 1 2s 3 4m m m m s s s
1�s�sg

then we assign as the four parental hap-H ,H ,H ,H1 2 3 4m m m m

lotypes of this ambiguous family. Under the assumption
of Hardy-Weinberg equilibrium, the above procedure is
to assign to each ambiguous family its most likely haplo-
type group. After assigning the parental haplotypes to
each ambiguous family, the HS-TDT (described in the
previous subsection [“Known Phase Information”]) can
be performed as if we knew the haplotypes for each family.

For an arbitrary set of haplotype frequencies, we
have proved in appendix C that, under the null hy-
pothesis, E( Fthe children’s trait values and the pa-yijk

rental genotypes) p 0 and, thus, that . Be-E [U(l)] p 0
cause under the null hypothesis, regardlessE [U(l)] p 0
of the choice of the haplotype frequencies, a particular
choice of the haplotype frequencies affects only the
power, but not the validity, of our HS-TDT.

In the present article, the haplotype frequencies are
estimated by treating all parents as a random sample
of unrelated individuals from a population with Hardy-
Weinberg equilibrium. The maximum-likelihood esti-
mates of haplotype frequencies under the constraints
of family information can be obtained by the expecta-
tion-maximization algorithm (Rohde and Fuerst 2001;
Chen and Zhang 2003).

As an alternative method to treat the ambiguous phase,
we can also use the estimated haplotype frequencies to
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construct the test statistic similar to that of Zhao et al.
(2000). In brief, suppose that and{H ,H ,H ,H }i1 i2 i3 i4s s s s

are all of the possible parental-haplotypes p 1, … ,ni

groups that are compatible with the genotype set of the
ith family and let denote the frequency of haplotypehijs

. DefineHijs

h h h hi1 i2 i3 i4s s s sp p .is ni� h h h hi1 i2 i3 i4lp1 l l l l

For a haplotype H, the haplotype-sharing score at the
lth marker can be defined as

n n 4i1
X (l) p S (l) p .�� �[ ]H H,H isijs4n ip1 sp1 jp1

Let , , , and denote the haplotype-X (l) X (l) X (l) X (l)i1 i2 i3 i4s s s s

sharing scores of the sth possible parental-haplotype
group of the ith family. Then, can be defined asx (l)ik

n 4i

sx (l) p y X (l) p ,� �[ ]ik ijk ij iss
sp1 jp1

where indicates whether the parental haplotypesy Hijk ijs

is transmitted to the kth child; if is trans-sy p 1 Hijk ijs

mitted to the kth child, and otherwise. Now,sy p �1ijk

we can construct the HS-TDT test statistic by using the
same formulas given in the previous subsection (“Known
Phase Information”); however, our simulations show
that the HS-TDT has a very similar power to HS-TDT1,
which assumes that the parental haplotypes are known.
Thus, using haplotype frequencies instead to assign the
most likely haplotype group to each family may have
little benefit; however, using the haplotype frequencies
to construct the test statistic may lead to extra compu-
tational burdens.

Simulation Setup

We evaluate the performance of our method through
simulation studies. We consider 11 biallelic markers that
are evenly distributed across a 1-cM region. The disease-
susceptibility locus has two alleles, D and d.

Data Sets for Assessment of Type I Error

To assess the type I error rate and the robustness to the
population stratification of our proposed method, we con-
sider a stratified population that consists of two subpop-
ulations. For the first subpopulation, the two alleles at
each marker have equal allele frequencies, and the fre-
quency of allele D at the disease locus is ; forp p 0.2D

the second subpopulation, we assume that the minor allele
at each marker has an allele frequency of , we varyq2

from 0.1 to 0.5, and the frequency of allele D at theq2

disease locus is . We assume that the distancep p 0.3D

between the disease locus and the first marker is 10 cM.
Furthermore, we assume that there is neither association
between the disease locus and the marker region nor as-
sociation among the 11 markers within each subpopu-
lation. To generate the haplotypes in the two subpopu-
lations, we generate alleles in each marker and the disease
locus independently, according to the allele frequencies
within each subpopulation.

For a qualitative trait of interest, we sample nuclear
families with one affected child. We randomly choose
a family with one child, and we use the acceptance
and rejection method to decide whether we accept this
family—that is, we accept the family with probabilities
P(affectedFDD), P(affectedFDd), and P(affectedFdd)
for the child’s genotypes DD, Dd, and dd, respectively.
To generate a randomly sampled family, we generate
the parental genotypes by drawing haplotypes in the
following way: with probability , we draw a haplo-pD

type with a disease mutation D; otherwise, we draw a
normal haplotype, and each of the parents then ran-
domly transmits one of the two haplotypes to the child
by considering the possible recombinations between the
disease-susceptibility locus and the marker region but
ignoring the recombinations among the 11 markers.
Let p P(affectedFDD), p P(affectedFDd), andf f11 12

p P(affectedFdd) be the penetrances; in our simu-f22

lations, we assume that , , and are 0.3, 0.16,f f f11 12 22

and 0.02, respectively, in the first subpopulation, and
0.2, 0.11, and 0.02, respectively, in the second sub-
population. Let pp be the proportion of families sam-
pled from the first subpopulation; we consider pp to
be 1/2, 1/4, and 1/6 in our simulations.

For a quantitative trait of interest, half of the families
that we sample are from the first subpopulation, and the
other half are from the second subpopulation. Let beyij

the trait value of the jth child in the ith family. We generate
the trait value by using the model ,y p m(1 � x ) � e1

where denotes the additive genotypic score (withx x1 1

being 1, 0, and �1 for genotypes DD, Dd, and dd,
respectively) and e is a standard normal random vari-
able. If a family comes from the first subpopulation, then

; otherwise, .m p 2 m p 4

Data Sets for Assessment of Power

To assess power, the haplotypes are obtained using
a method similar to that described by Tzeng et al.
(2003) and Lam et al. (2000). This method mimics
features of natural populations as closely as possible
by using a direct simulation method. Diploid individ-
uals are paired at random in their generation and are
mated. The number of children per couple is randomly
drawn from a Poisson distribution with mean l. Each
population is founded by 100 individuals, and the
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expected size remains at 100 for 50 generations (the
reproduction rate ). This initialization, togetherl p 2
with small population growth in early generations,
generates random linkage disequilibrium among al-
leles on normal chromosomes. After 50 generations,
the population grows exponentially for 100 genera-
tions, to a final size of 10,000 individuals; during this
period, the reproduction rate l is determined by the
exponential growth rate. We consider two scenarios:
one ancestral haplotype and two ancestral haplotypes.
For the first scenario, one disease mutation is intro-
duced on one chromosome in the 51st generation; for
the second scenario, two disease mutations are intro-
duced in the 51st and 61st generations, respectively.
To mimic the common disease, we choose only the
populations in which the relative frequency of disease
mutation is no less than 0.1. For computational sim-
plicity, we reinitiate the simulation if the relative fre-
quency of disease mutation is !0.1 in the 70th gener-
ation.

We simulate 11 biallelic markers, covering a 1-cM
region, with spacing of 0.1 cM between the adjacent
markers. The sixth marker is located at the disease-sus-
ceptibility locus (assuming a negligible recombination
rate), but the sixth marker is not the disease-suscepti-
bility locus itself (i.e., the marker is not the functional
polymorphism). We assume no mutation for the alleles
at the 11 markers.

To generate the chromosome in the founder popula-
tion, we generate alleles at each of the 11 markers in-
dependently, according to the allele frequencies. The mi-
nor allele frequency at each marker is drawn from a
uniform distribution over the interval 0.1–0.4.

The simulation program produces populations from
which samples of haplotypes with or without the disease
mutation can be drawn. For a qualitative trait of interest,
to compare our test with that proposed by Zhao et al.
(2000), we consider the nuclear families with one affect-
ed child (Zhao et al.’s test can consider only one affected
child). Let RR denote the relative risk of genotypes DD
to dd and let denote the frequency of allele D. ForqD

the given RR, , and disease model, the parental ge-qD

notypes at the disease-susceptibility locus are generated
according to the probability of mating types, under the
condition that the child is affected. The parental multi-
marker genotypes are generated according to the geno-
types at the disease-susceptibility locus; for example, if
the father’s genotype at the disease-susceptibility locus
is Dd, then we randomly choose one haplotype with the
disease mutation and one haplotype without the disease
mutation, to form the father’s multimarker genotype.
Conditional on the parents’ mating types, the affected
child’s genotype is generated by ignoring the recombi-
nation. In our simulations, we set , vary RRq p 0.3D

from 2 to 5, and consider three disease models—reces-
sive, additive, and dominant.

For the case of the quantitative trait, we use a random
sampling scheme. Each parental genotype is generated
by drawing a haplotype bearing the disease mutation
with probability and a normal haplotype with prob-pD

ability . Each of the parents randomly transmits1 � pD

one of the two haplotypes to form their child’s genotype.
The trait values of the children are generated by the
model , where denotes the ad-y p m(x � bx ) � e x1 2 1

ditive genotypic score (with being 1, 0, and �1 forx1

genotypes DD, Dd, and dd, respectively), denotes thex2

dominant genotypic score (with being 0, 1, and 0 forx2

genotypes DD, Dd, and dd, respectively), b denotes the
disease model (with b being �1, 0, and 1 for recessive,
additive, and dominant models, respectively), and e is a
standard normal variable. The value of m can be cal-
culated from the value of heritability. In our simulations,
we set , vary the values of heritability from 4%q p 0.3D

to 10%, and vary the number of children from 1 to 5.

Results

For each simulation scenario, 1,000 independent sam-
ples (100 populations with 10 samples from each pop-
ulation for power comparisons) of 200 nuclear families
were generated in the studies of the type I error rate and
the power. For each sample, the p values of all of the
tests considered were estimated by 1,000 permutations.

Type I Error Rate

We first verified that the HS-TDT had the correct
nominal type I error rate in a structured population.
To see how the ambiguous phase affects the type I
error rate, we also gave the estimated type I error
rate of HS-TDT1, which is the HS-TDT under the
assumption that the phase information is known. For
1,000 replicated samples, the SEs for the type I er-
ror rate were and�3�(0.05 # 0.95) /1,000 ≈ 6.9 # 10

, for the nominal�3�(0.01 # 0.99) /1,000 ≈ 3.15 # 10
levels of 0.05 and 0.01, respectively. The 95% CIs
were 0.0362–0.0638 and 0.0037–0.0163, respec-
tively. The estimated type I errors of the two tests,
HS-TDT1 and HS-TDT, are summarized in table 1,
for a qualitative trait, and in table 2, for a quanti-
tative trait. It is easy to see that the estimated type
I errors of the two tests are not statistically signifi-
cantly different from the nominal levels. For the
cases when the frequency of the minor allele is 0.5
at each of the two subpopulations, there are a large
number of possible haplotypes, and, therefore, al-
most all of the haplotypes are rare. In this case, the
error rate of resolving the ambiguous haplotypes is
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Table 1

Type I Error Rates of the Tests, HS-TDT and HS-TDT1—for a
Qualitative Trait

PARAMETERS

TYPE I ERROR RATE AT

Significance Level
.05, for

Significance Level
.01, for

HS-TDT1 HS-TDT HS-TDT1 HS-TDT

Sample size 100:
:q p .12

pp p 1/2 .047 .05 .01 .011
pp p 1/4 .05 .045 .009 .008
pp p 1/6 .052 .058 .011 .009

:q p .32

pp p 1/2 .056 .061 .015 .011
pp p 1/4 .05 .052 .013 .014
pp p 1/6 .047 .045 .007 .005

:q p .52

pp p 1/2 .052 .042 .014 .009
pp p 1/4 .054 .05 .011 .015
pp p 1/6 .057 .049 .011 .015

Sample size 200:
:q p .12

pp p 1/2 .053 .051 .012 .009
pp p 1/4 .052 .055 .012 .011
pp p 1/6 .058 .057 .015 .015

:q p .32

pp p 1/2 .054 .062 .013 .013
pp p 1/4 .065 .062 .017 .016
pp p 1/6 .045 .049 .009 .008

:q p .52

pp p 1/2 .036 .042 .007 .009
pp p 1/4 .054 .046 .015 .009
pp p 1/6 .063 .059 .01 .011

NOTE.—The sample size is the number of nuclear families. The
minor allele frequency in the second subpopulation is denoted by

. pp denotes the proportion of the sample from the first sub-q2

population.

Table 2

Type I Error Rates of the Two Tests, HS-TDT and HS-TDT1—for a
Quantitative Trait

PARAMETERS

TYPE I ERROR RATE AT

Significance Level
.05, for

Significance Level
.01, for

HS-TDT1 HS-TDT HS-TDT1 HS-TDT

Sample size 100:
:q p .12

nc p 1 .048 .047 .014 .012
nc p 3 .053 .052 .008 .011
nc p 5 .045 .047 .006 .008

:q p .32

nc p 1 .057 .049 .017 .014
nc p 3 .056 .055 .016 .013
nc p 5 .03 .032 .004 .002

:q p .52

nc p 1 .05 .055 .008 .01
nc p 3 .058 .054 .015 .016
nc p 5 .047 .043 .011 .01

Sample size 200:
:q p .12

nc p 1 .051 .049 .016 .013
nc p 3 .049 .052 .01 .009
nc p 5 .067 .061 .018 .016

:q p .32

nc p 1 .067 .066 .015 .018
nc p 3 .062 .062 .013 .013
nc p 5 .054 .055 .013 .012

:q p .52

nc p 1 .048 .045 .011 .008
nc p 3 .044 .057 .017 .014
nc p 5 .071 .069 .014 .012

NOTE.—The sample size is the number of nuclear families. The
minor allele frequency in the second subpopulation is denoted by

. The number of children in each family is denoted by “nc.”q2

120% (results not shown); however, the HS-TDT
still has the correct type I error rate.

Power Comparisons

Here, we describe the results from our power studies.
The significance level was set at 0.05. The tests used for
the comparisons are summarized in table 3. The powers
of the single-marker methods, TDT and QTDT, are the
powers of testing the sixth marker, which is the nearest
to the disease-susceptibility locus (negligible recombi-
nation rate). The powers of the tests TDT2, TDT3, and
TDT4 are the powers of the tests proposed by Zhao et
al. (2000), using two, three, and four markers, respec-
tively, around the susceptibility locus. In our simulation,
200 families were sampled. The numbers of distinct hap-
lotypes varied from 35 to 55 in our simulated samples.
On average, there were 13 common haplotypes (fre-
quency �0.01), which accounted for 190% of the total
800 haplotypes.

For the case of a qualitative trait of interest, 200 fam-
ilies were ascertained through an affected child. On av-
erage, 35% of the families had ambiguous haplotypes.
When the EM algorithm was used to reconstruct the
haplotypes, the error rates varied from 0.5% to 5%.
The power comparisons of the six tests—HS-TDT1, HS-
TDT, TDT, TDT2, TDT3, and TDT4—are given in fig-
ure 2. We can see from the figure that the powers of
HS-TDT1 and HS-TDT are very similar. One explana-
tion may be that the error rate of haplotype reconstruc-
tion is not large; another may be that the true haplotype
and the estimated haplotype, though different, have sim-
ilar haplotype-sharing scores. The power comparisons
show a similar pattern for different disease models. For
all of the cases, the powers of both HS-TDT1 and HS-
TDT are higher than the powers of the other four tests;
of the four other tests, TDT2 has highest power for the
case of one ancestral haplotype, and TDT3 has the high-
est power for the case of two ancestral haplotypes. In
comparison with other tests, the performance of the sin-
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Table 3

Test Statistics Compared

Test Statistic Details

HS-TDT Haplotype-sharing TDT proposed in the present article
HS-TDT1 Same as HS-TDT but assuming that the haplotype information is known
QTDT Test proposed by Monks and Kaplan (2000)
TDT Test proposed by Spielman et al. (1993)
TDT2, TDT3, and TDT4 Tests proposed by Zhao et al. (2000) for tightly linked markers, using two, three, and four markers,

respectively; haplotype frequencies were estimated by the EM algorithm by assuming Hardy-Weinberg
equilibrium in the population under study

Figure 2 Power comparison of the six tests for a qualitative trait. The sample size is 200 families with one affected child in each family.

gle-marker TDT in the case of two ancestral haplotypes
is not as good as that in the case of one ancestral hap-
lotype.

For a quantitative trait of interest, 200 families were
randomly sampled. The powers of the three tests HS-

TDT1, HS-TDT, and QTDT were compared. We present
the power comparisons in figures 3 and 4. In figure 3,
we summarize the power comparisons for different val-
ues of heritability with two children in each family; the
power comparisons for a different number of children
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Figure 3 Power comparison of the three tests for a quantitative trait—with two children in each family. The sample size is 200 families.

are given in figure 4. When there is only one child in
each family, HS-TDT is slightly less powerful than HS-
TDT1; when the number of children in each family is
more than one, the powers of the HS-TDT and HS-
TDT1 are very similar. In all of the cases, both HS-TDT
and HS-TDT1 are more powerful than QTDT.

We also performed another set of the simulations, in
which the fourth marker was at the disease-susceptibil-
ity locus (which was not at the middle of the marker re-
gion). The power comparisons showed a similar pattern
(results not shown).

Discussion

The TDT, proposed by Spielman et al. (1993), has proved
to be a powerful approach. The TDT using multiple tight-

ly linked markers may further increase the statistical pow-
er; however, in extending the single-marker TDT to the
case of multiple tightly linked markers, we may encounter
some difficulties: first, if we consider each haplotype as
an allele and use the conventional single-marker TDT,
then the rapid increase in the number of haplotypes with
an increasing number of markers leads to low power for
the conventional statistical tests; second, the parental hap-
lotypes may not always be unambiguously reconstructed.
In the present article, we have proposed the HS-TDT, a
haplotype-based TDT using multiple tightly linked mark-
ers, to test linkage or association between the disease-
susceptibility locus and a chromosome region in which
several tightly linked markers have been typed. This meth-
od is applicable to both qualitative traits and quantitative
traits. It is applicable to any size of nuclear family, with
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Figure 4 Power comparison of the three tests for a quantitative trait—with heritability fixed at 6%. The sample size is 200 families.

or without ambiguous phase information, and is appli-
cable to any number of alleles at the markers considered.
The degrees of freedom (in a broad sense) of the test
increase linearly with the number of markers considered,
rather than with the number of alleles at the markers.
Our simulation results show that the HS-TDT has the
correct type I error rate in structured populations and
that the power of HS-TDT is higher than the power of
the other methods.

In the present article, we have assumed that both par-
ents were available for genotyping. In the case of a single
marker, the TDT has been extended to the families con-
sisting of siblings without parents (Curtis 1997; Boehnke
and Langefeld 1998; Horvath and Laird 1998; Spielman
and Ewens 1998; Teng and Risch 1999; Monks and Kap-
lan 2000) and to the families consisting of one child and

one parent (Sun et al. 1999, 2000). Our method may be
extended to both the case of siblings without parents and
the case of siblings with only one parent. The other as-
sumption made by our method is that there is no recom-
bination among the tightly linked markers under study.
This assumption can be relaxed to allow recombination
among the markers, but more parameters are needed to
define the recombination fractions among the markers;
this, in turn, requires additional computation. Overall,
there may be little benefit in considering the recombi-
nation for tightly linked markers. If linkage disequilib-
rium exists across the region for a nonadmixture pop-
ulation, then the recombination must be quite infrequent
and probably can be safely ignored. For the admixture
populations or founder populations, the recombination
may be common among the markers with linkage dis-
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equilibrium. In that case, the method proposed by Bour-
gain et al. (2002) may be used to resolve the ambiguous
haplotypes.

As stated above (see the “Results” section [“Power
Comparisons”]), there may be two reasons for the sim-
ilar powers of HS-TDT and HS-TDT1. One reason is
that the error rate of haplotype reconstruction is small,
especially for the case of a restricted number of haplo-
types in the sample. As indicated by Chen and Zhang
(2003), the error rate of haplotype reconstruction can
be greatly improved if the parental genotypes are in-
cluded. Another reason is that, even if the true haplo-
type and the estimated haplotype are different, the
haplotype-sharing scores of the two haplotypes may
be similar. Let us consider an ideal case, in which the
haplotype-sharing score is 1 for the haplotypes with
the disease mutation and is 0 otherwise. In this case,
if the estimated haplotype H is different from the true
haplotype but H and both bear the disease mu-′ ′H H
tation or both do not bear the disease mutation, then
the haplotype-sharing scores of H and will be the′H
same, and this kind of incorrect reconstruction of the
haplotypes will not affect the power of the our test.
In fact, we have done another set of simulations for

power comparisons. In that set of simulations, we as-
sumed that there was no association among the mark-
ers in the population at large and, thus, that the num-
ber of haplotypes was very large. In this case, the error
rate of the haplotype reconstruction was large (15%–
35%), but the powers of HS-TDT and HS-TDT1 were
still very similar. The reason is that almost all of the
haplotypes that could not be correctly reconstructed
were rare haplotypes without the disease mutation, and
the rare haplotypes without the disease mutation had
similar haplotype-sharing scores.

In our simulation studies, we assumed that there were
either one or two ancestral haplotypes. For the case of
no ancestral haplotypes, the performance of the HS-
TDT and the power comparisons will need further in-
vestigation.
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Appendix A

Expectation of under the Null Hypothesis for Known Phase InformationU(l)

If there is no linkage between the disease-susceptibility locus and the chromosome region considered, then it is
obvious that the parents will transmit each of the two haplotypes to the child with equal probability, regardless
of the child’s trait value. Thus, E( Fchild’s trait, parents’ genotype) p 0, and . In the followingy E [U(l)] p 0ijk

discussion, we assume that there is no association but that there may be linkage.
First, assume that the families are sampled from a homogeneous population with Hardy-Weinberg equilibrium

both at the chromosome region considered and at the disease-susceptibility locus. Let and denote the twoD D1 2

alleles at the disease-susceptibility locus. For an individual from this population, let Y and g respectively denote
this individual’s trait value and multimarker genotype across all of the markers considered. Then, for any y,

2 2 2 2

P(Y � y,g) p P(Y � yFg,D D )P(g,D D ) p P(Y � yFD D )P(g,D D ) . (A1)�� ��i j i j i j i j
ip1 jp1 ip1 jp1

Denote the two haplotypes of g by and . Under the assumption of Hardy-Weinberg equilibrium and noH H1 2

association, we have

P(g,D D ) p P(H D ,H D ) � P(H D ,H D ) p 2P(H D )P(H D ) � 2P(H D )P(H D )i j 1 i 2 j 1 j 2 i 1 i 2 j 1 j 2 i

p 4P(H )P(H )P(D )P(D ) p P(g)P(D D ) . (A2)1 2 i j i j

From equations (A1) and (A2), it follows that . This means that the trait value andP(Y � y,g) p P(Y � y)P(g)
the genotype are independent. Let denote the genotype of one parent, let denote that the haplotypeP tr r H Hg i i
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has been transmitted to the child, and let Y denote the trait value of the child. Then, given the child’s trait value,
the probability of one parent with haplotypes and transmitting isH H H1 2 1

1
P(tr r H FP p H H ,Y) p P(tr r H FP p H H ) p .1 g 1 2 1 g 1 2 2

Thus, E( FY, parental genotypes) p 0, and . Furthermore, .y E [U (l)] p 0 E [U(l)] p � w E [U (l)] p 0ijk i i ii

Consider a population that is composed of m subpopulations with Hardy-Weinberg equilibrium within each
subpopulation. Note that the large population may not have Hardy-Weinberg equilibrium. Given the child’s trait
value, the probability that one parent with haplotypes and transmits isH H H1 2 1

m

P(tr r H FP p H H ,Y) p P(tr r H FP p H H ,Y, subpopulation i)P(subpopulation i)�1 g 1 2 1 g 1 2
ip1

m 1 1
p P(subpopulation i) p .�

2 2ip1

Using an argument similar to the case of homogeneous population with Hardy-Weinberg equilibrium, we can
conclude that .E [U(l)] p 0

Appendix B

The MILC Method of Bourgain et al. Is a Special Case of HS-TDT

We will show that, for the case of qualitative traits, if all of the children are affected and , then the HS-w p 1i

TDT will be the MILC method proposed by Bourgain et al. (2000). Without loss of generality, we assume that
there is one affected child in each family. For the ith family, let and be the paternal haplotypes and andH H Hi1 i2 i3

be the maternal haplotypes and let and be transmitted to the child. Then, the HS-TDT statistic isH H Hi4 i1 i3

n n n 4 4 4 41
[ ]U(l) p X (l) � X (l) � X (l) � X (l) p S (l) � S (l) � S (l) � S (l) .� �� � � � �[ ]i1 i3 i2 i4 H ,H H ,H H ,H H ,Hi1 jk i3 jk i2 jk i4 jk4nip1 ip1 jp1 kp1 kp1 kp1 kp1

Note that, for any two haplotypes and , , and . We haveH H S p S S p S1 2 H ,H H ,H H ,H H ,H1 2 2 1 1 1 2 2

n n n n1
[ ] [ ]U(l) p S (l) � S (l) � S (l) � S (l) � S (l) � S (l) � S (l) � S (l)�� ��{ }H ,H H ,H H ,H H ,H H ,H H ,H H ,H H ,Hi1 j1 i1 j3 i3 j1 i3 j3 i2 j2 i2 j4 i4 j2 i4 j44n ip1 jp1 ip1 jp1

n n n n1 1
[ ] [ ]p S (l) � S (l) � S (l) � S (l) � S (l) � S (l) .� �� � ��{ } { }H ,H H ,H H ,H H ,H H ,H H ,Hi1 j1 i3 j3 i1 j3 i2 j2 i4 j4 i2 j42n 2n! !i j ip1 jp1 i j ip1 jp1

Denoting , , , and , for , we obtain∗ ∗H p H H p H H p H H p H i p 1,2, … ,ni i1 i�n i3 i i2 i�n i4

1 1 n � 1
[ ]U(l) p S � S p M (l) � M (l) ,∗ ∗� �H ,H H ,H T ni j i j2n 2n 4! !1�i j�2n 1�i j�2n

where and are the mean similarities of all possible pairs of haplotypes in the transmitted group and inM (l) M (l)T n

the nontransmitted group, respectively. The test statistic of the MILC method of Bourgain et al. (2000) is

[ ]DM p max M (l) � M (l) ,max T n
1�l�L

which is equal to our test statistic U up to a constant . Therefore, the two tests are equivalent.(n � 1) /4
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Appendix C

The Case of Ambiguous Haplotypes, , Regardless of the Haplotype FrequenciesE [U(l)] p 0

For clarity of presentation, we assume that there is one child in each nuclear family. In the discussion that follows,
we designate as a haplotype group in which the father has haplotypes and and transmits to the{ij,kl} H H Hi j i

child and in which the mother has haplotypes and and transmits to the child. Let be the conditionalH H H Pk l k ij,kl

probability that the father has haplotypes and transmits to the child and that the mother has haplotypes{H ,H } Hi j i

and transmits to the child, given that the child’s trait value is Y.{H ,H } Hk l k

From appendix A, we know that, under the null hypothesis, . For a family with ambiguous haplotypes,P p Pij,kl ji,lk

let and denote the observed multimarker genotypes of the child and the parents, respectively. Let ,G G {1 2 ,3 4 }o p s s s s

, be the all possible haplotype groups that are compatible with the set of genotypes . Choosings p 1, … ,s {G ,G }g o p

an arbitrary s, let denote the genotype corresponding to haplotype . Then, for every compatible′G {H ,H } {1 2 ,3 4 }o 2 4 s s s ss s

with the genotype set , the set must be compatible with . Thus, under the null hypothesis,′{G ,G } {2 1 ,4 3 } {G ,G }o p s s s s o p

the probabilities of and are the same given the parental genotype and the child’s trait value Y—that is,′G G Go o p

s sg g ′ ′� P � P1 2 ,3 4 2 1 ,4 3sp1 sp1P(G ,G FY) P(G ,G FY )s s s s s s s so p o p ′ ′P(G FG ,Y) p p p p p P(G FG ,Y ) ,o p o pP(G ) P(G ) P(G ) P(G )p p p p

where Y and denote the trait values of the children with genotypes and respectively.′ ′Y G G ,o o

For an arbitrary set of haplotype frequencies , suppose thathis

h h h h p max {h h h h } .1 2 3 4 1 2 3 4m m m m s s s s
1�s�sg

Then, the haplotype group will be assigned to the family , and the haplotype group{1 2 ,3 4 } {G ,G }m m m m o p

will be assigned to the family . Let indicate whether the parental haplotype′{2 1 ,4 3 } {G ,G } ym m m m o p i

is transmitted to the child; if is transmitted to the child, and otherwise.H (i p 1,2,3,4) y p 1 H y p �1i i i im m

Note that and . In the discussion that follows, we assume the null hypothesis to be true.y p �y y p �y2 1 4 3

Let denote the conditional probability given the parents genotypes and the child’s trait value. We haveP�

′ ′P (y p 1, y p 1) p P(G FG ,Y) p P(G FG ,Y ) p P(y p �1, y p �1) . (C1)� 1 3 o p o p 1 3

Similarly, we can prove that

P (y p 1, y p �1) p P (y p �1, y p 1) . (C2)� 1 3 � 1 3

It follows from equations (C1) and (C2) that . Thus, the expectation of isP (y p 1) p P (y p �1) p 1/2 U (l)� 1 � 1 i

0, and the expectation of is also 0.U(l)

Appendix D

Degrees of Freedom in a Broad Sense

The test statistic of HS-TDT is , whichU p max FU(l)Fl

is equivalent to . For the large sample size,2max U (l)l

will be approximately normally distributed. Thus,U(l)
if are independent, then L 2 2U(1), … ,U(L) � [U (l)/j (l)]ip1

will have a distribution, with degrees of freedom2x

equaling L (the number of markers). Since our test sta-
tistic is equivalent to using the maximum of , in-2U (l)
stead of the sum of , and since may2U (l) U(1), … ,U(L)
be dependent, we say that the degrees of freedom of our
test are equal to L in a broad sense. The broad sense of

degrees of freedom in the MILC method proposed by
Bourgain et al. (2000) has the same meaning.
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